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DYNAMICS OF NORMAL SEPARATION CRACK GROWTH DURING ITS CLEAVAGE BY 
A FLOW GAS* 

YU.N. GORDEYEV and N.A. KUDRYASHOV 

The propagation of a plane normal separation crack at constant velocity 

in an elastic medium subjected to a cleaving compressible gas flow is 

considered. The selfsimilar solution is constructed. The possibility 

of the formation of stagnation shocks in the gas flow is shown. 

Fracture of transparent materials subjected to powerful focused 

laser radiation occurs, as a rule, with the formation of cracks /l, 2/. 

Light absorption by transparent materials is accompanied by the formation 

of high temperature and pressure domains, resulting in the destruction 

of the material and in gas bubble formation. Cleavage of the material 

and crack formation occur under the effect of excess gas pressure. The 

gaseous destruction products penetrate from the cavity into the crack. 

As time elapses the total pressure on the crack edge increases resulting 

in further crack growth under the action of the cleaving gas flow. Such 

a pattern is also realized in the method of intensification of oil and 

gas extraction during stratum rupture by powder gases /3/, when the gases 

act on the crack surface similar to a wedge; the cracks being formed here 

can have fairly large dimensions. 

It is established experimentally that under high gas pressure in an 

underground cavity during a long time interval crack propagation from a 

cavity occurs at a constant velocity and then decreases slowly /2, 4/. 

Selfsimilar problems on crack development at a constant rate have 

been examined in a number of papers /5-8/. The state of stress of a 

rectilinear isolated slit growing at a constant rate and loaded from 

within by concentrated forces is studied in /6/. Solutions are obtained 

for the plane /7/ and axisymmetric problems /8/ of crack propagation in 

an elastic medium subjected to a homogeneous tensile stress. 

1. Formulation of the problem. The motion of an isothermal gas penetrating a crack 

is described by the equations of conservation of mass and momentum 

g (P4 + -g- (pm) = 0, P = cap U.1) 

P(~U+U-&)+&P=-F 

(pt Q are the gas pressure and density, u is the velocity of gas motion in the crack, c is 

the isothermal velocity of sound, w is the crack aperture, and F is the drag force during gas 
motion along the crack). 

For high Reynolds numbers (uw/v>750) the drag force is described by the quadratic law 

F = ‘l,h,w’-‘pu 1 u,I 
where h, is a coefficient which depends on the Reynolds number and the crack roughness in the 

general case. 

The elastic displacements of the medium satisfy the equations /5-6/ 

Here 1(&r, y, t), Vf(r, Y, t) are the potential and solenoidal components of the displacement 
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vector w (5, Y, t), and Cl, Ca are the longitudinal and transverse wave velocities (cl> Ca). 
The components of the stress tensor are related to the displacements by the following 

expressions (@ is Lam&'s constant) 

The initial and boundary conditions for (1.3) and (1.4) that describe the propagation of 
a slit in an elastic medium have the form (v is the velocity of the crack) 

Dkar = --P (z&t), OX, = 0; _zj = 0, 12 / < ut (1. 5) 
z& = 0, a, = 0; y = 0, vt < / z 1 < c,t 

We assume that the stress tensor component oyy at the crack tips has a root singularity 

a,(x,Y=O,t),i 
KI (t) 

1/2n(r-vl) (W 

where &(t) is the stress intensity factor. 
We use the following boundary conditions for system (1.1) describing the motion of the 

gas in a propagating crack: 

P (z = 0,t) = P,, u (z = 0 It: 0,t) = *u*, u (5 = *z(t), t) = rfv (1.7) 
(PO, u* are constants and W) is the crack length at the time t). 

To solve system (1.11 for a subsonic gas influx into the crack (u+ <c) at the point 
2 = 0, one boundary condition is sufficient, say, the first from cl.'?), while two conditions 
(1.7) are necessary at this point /9/ for a supersonic influx (r$>C). 

2. The selfsimilar problem. Problem (l-l)-(1.7) is selfsimilar with the variable 
% = xl(vt). The dynamic characteristics, the pressure, velocity, and crack aperture, can be 
represented in the form 

p (W) = POP,(%), u(z, t) = vu,(%), E = (rY/c)e 

w (at) = w&*(E), Wg = V&ye 

(2.1) 

where u)~ is the dimensionality constant of the velocity. 
Eqs.(l.l) and conditions (1.7), written in the selfsimilar variables (2.1), have the 

form (henceforth the subscript a on the selfsimilar variables is omitted) 

dlnPJd% = -e(u - %)duJd% - upw-l GW 

du 
d;= 

(e - Sf w-l [u*-- dw/df] - I 

_1 1 -8 (u-g* 

P(% = 0) = 1, u (E = OzkO) = *u,/v, n(% -)c **) = * (2.3) 

The Hugoniotconditions for system (1.1) can be represented in selfsimilar variables in 
the form 

IP(u - %)I = 0, TP + & (u - %)2PJ = 0 

(VI = I(% -t- 0) - f(% - 0)) 

(2.4) 

To determine the crack profile u'(E) under the loading Uyy = -POP(%) we use the method 
of functionally invariant solutions of Smirnov-Sobolev /5, 6/ by introducing the functions 

us = &l&& vi = av,/at (2.5) 

The function Us here satisfies the wave equation for the longitudinal waves while Vz 
satisfies the transverse wave equation, These functions can be represented as the real parts 
of analytic functions of the complex variables a, and 2% 

U’(-+ -$) = Re Ur’(z,), Vc (5 , -$) = Re Vc’ (z2) 

( T&= 
=~--Y1/t*-*?(*+Y2) , k__$ 2 

+‘+Y* , > 

Satisfying the last two relationships of system (1.3) and the condition 0,,=0 for 
y = 0,. we express VI' (s), Ui' (s) in terms of the analytic function w(z) (the prime denotes 
the derivative with respect to 2) 
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For y = 0 we have from (1.4) 

s (2) = (c;Z - 22y + 49 1/ $ - za v’$ - 2 

We formulate the boundary value problem for the function W’ in the plane of the complex 
variable 2. Taking account of (2.7) we obtain from (1.5) 

Im z = 0, c,' < 1 Ae z 1 < u-l, Re W' = 0 
Ims= 0, 1 RezI<czbl, ReW'= 0 

Therefore, problem (1.3)-(1.6) reduces to a mixed Keldysh-Sedov problem for the function 
w' whose solution can be represented in the form /6/ 

The constant A 

We approximate 

is found from the equation 

r3&t - 0, 0, t) = -P (vt, t) 

the gas pressure in the crack by the finite sum 

P(z*t)NPg 5 Pj[6,(Ej-_)-S,(-_j-_)1 
Jd 

(2.9) 

(2.10) 

(2.11) 

where 6,(Z) is the Heaviside unit step function. 
The equations of elasticity theory are linear; consequently, the profile of the crack 

opening and the stress intensity factor are also approximated by finite sums 

l2.12) 

Here wg(s), &'(t) are the crack opening and the stress intensity factor that correspond 
to the load PO Is,(g, - 5) - &,f-& - @I. We find W'(S) and KJ’ (t) for the special load- 
ing case 

p (5, t) = p, MO (L - 5) - 8, (-51 - 5)l (2.13) 

We have from (2.8) for Y = 0 (Us) is the delta-function) 

P&n%&“&. 6 - 

Substitutingthis expression into (2.9) and introducing the dimensionless variable s = VZ, 
we obtain 

Integrating relationship (2.14), we obtain 
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(2.15) 

The stress tensor component a,, is determined from (2.7) and (2.14) on the crack con- 
tinuation 

From the boundary conditions for the analytic function 

s+m, ReW(s)=O(l), ImW=O 

Ims=O, jResj>1, ImW=O 

s + fl, W(s) = 0 [(SZ - I)-‘/4 

,(2.17} 

and (2.15) we obtain a, = 0. knowing the potential W (2.15) we find the crack profile from 
(2.5) and (2.17). Since 

then 

Using the condition (2.10), we obtain from (2.16) 

(2.18) 

(2.19) 

J, = 23j7;f (@ - gy’, Ja = ‘10 

The integrals Irand 1~ at the point q = 1 are understood in the principal value sense 
and are expressed in terms of elliptic integrals ([r/6/) 

I, = 2%*-l {n” I4 - q;a (m” - 2ny (%,-a - ny1 F (41) - 
4ma F(qz) + 14 - qia (ma - 2)’ (%I’ - I)-‘1 E(qJ - 
4 (1 - 2%?) (i - Ety-” E(qz) + %,-lb, (m”hS - 2)P (1 - 
n’%&~ D-I (k,d,, 4) - II (k,-‘ci~, f&)1 - 

4%~~‘bz D’f (kd. dz) - II (kz-‘A, c&)1) 
qk = ‘1/l - ikP, bk = 4i (1 + iJ1 (1 - %lP)-l 

kk = (1 + ik%J(i - irh), dk = (1 - t )I(1 f ik); i, = n, 

zz = m 

where P(q). E(q), Wk, q) are the complete elliptic integrals of the first, second, and third 
kinds, respectively. 

The stress intensity factor for the load (2.13) is found from (2.16) 

For &= 1 the solution of the problem of uniformly loaded crack propagation 

w (z, t) - -tP~lp%maI~-l f1 - E’ 

follows from (2.18), (2.19), (2.15), and (2.20). 

(2.20) 
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Froblem (2.2), (2.3) of the propagation of a crack wedged open by a gas flow was solved 

by a fourth-order Runge-Kutta method. 

At the beginning of the computation the crack profile was given in the form &O) = 1 - 5 

(0 d 5 d I). The gas pressure and the velocity of its motion in the crack were determined by 

solving system (2.2) with condition (2.3). For the subsonic gas flow regime in the crack one 

of the boundary conditions (2.3) was used. In this case the solution of system (2.2) was 

found with a reverse step from 5=1 to t=o. To solve (2.2) for the supersonic gas flow 

regime in the crack both boundary conditions (2.3) were taken into account. The integration 

of (2.2) was here carried out from the two ends of the interval [O, 11. The solutions were 

mergedin the case when the Ilugoniot condition (2.4) was satisfied. According to the computed 

gas pressure in the crack the values of Pz(I=l, . . . . N, where N is the number of mesh nodes in 

5) were found. The crack aperture w(r) and the stress intensity factor Kr) were restored by 

means of (2.12). 

The Values of WI' = LU' (“1) and IfI were calculated at the beginning of the computation 

(I, j = 1, ., N). Then the algorithm for the solution was repeated with a new profile &) etc., 

until the following condition was satisfied: 11 uJH1) - ID(') 1 < 6 (6 = IO+, s is the number of 

iterations). Convergence was achieved after 6-7 iterations. 

3. Results and their discussion. Let us examine the results of the numerical sol- 

ution of problem (2.21, (2.3), (2.111, (2.12), (2.18), (2.20). 

When the crack propagation velocity in an elastic medium u is greater than the isothermal 

speed of sound in the cleaving gas flow, only a supersonic regime of gas influx into the crack 

is possible (u* > c). 
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Fig.2 

Fig.3 

Fig.1 illustrates the profile of the 

crack opening w / &It), the pressure PIP, 
(solid curves) and the gas flow velocity u/v 

(dashed lines) for u,Ic = 1.6,2.0,2.5 (curves 

l-3). These calculations were carried out for 

the following values of the parameters: D.= 

0.2, m = 0.3, e = 1.5, PO/p = 0.33. It is 

seen that the gas velocity in the crack 

decreases as E increases, while the pressure 

first increases and then decreases. For a 

certain value E = E, both the pressure and 

the velocity vary abruptly, after which the 

velocity of motion of the gas is practically 

equal to the velocity of motion of the crack 

(U N V). 
The jump in the solution when E, = Eo 

is a stagnation shock (SS) whose front is 

opposite to the gas flow. The origination of 

the SS is explained by the action of the drag 

force on the supersonic gas flow /9, lo/. The 

decrease in the velocity of gas influx into 

the crack results in a decrease in the 

magnitude of the jump on the SS. For a crack 

with v>c there exist Umin and Emin 
such that for U* > Umin the SS location 

corresponds to go> &m, while the SS is 

degenerate for U* = urnin and the gas pressure 
and velocity profiles in the crack become 

continuous. Solutions with u* < u,,,,, do not 
exist. 

If the crackvelocityofpropagation v is 
lessthanthe isothermalspeedof soundc, two 

gas influx regimes are possible in the crack: 
supersonic (u*>c) and subsonic (u* < c). 

For u*> c thereis always a SS in the 
flow (Fig.2 is constructed for m = 0.173; 

n = 0.115; E = 0.5; P,@ = 2.3.103, U./C = 

2.96 (curve 1); PO/p = 1.95.10-3, u*Ic =5.36 

(curve 2); P& = 1.87.10-3, u,Ic = 7.05 

(curve 3)). As the gas influx velocity 

decreases u*+ urn,,,, the SS front 5, -+o. 
One of the boundary conditions (2.3) is 

utilized for the subsonic mode of gas motion 
in the crack forthesolution of (2.21, (2.3) 
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at E=O. The velocity of gas influx into the crack is determined as a result of solving 
the problem. The gas pressure and velocity profiles are continuous functions of the self- 
similar variable 5 (Fig.3 is constructed for m = 0.173; n = 0.115; 8 = 0.5; P,Ip = 2.12.10-l 
(curve 1); P,/p = 9.17.10-a (curve 2) ; PO/p = 6.O7-1O-3 (curve 3)). 

If the crack rate of development is much less than the speed of sound in an elastic 
medium (ma, nag 11, then keeping the principal term in the expansion (2.18) in the small 
parameters ma and na we obtain 

w~(++ ~~ - ((arcsinEJ1/1 - 5" + x(5)) 

where h, p are Lam; coefficients, cr = [(h + 2p)lpJ”‘; CL= IJ.dp,l’~* is the speed of sound in 
the medium, and ps is the rock density. 

Relationship (3.1) governs the crack opening profile w'(S) for the load (2.13) in the 
quasistationary approximation. 
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